AQA Computer Science A-Level 4.4.5 A model of computation Past Paper Questions ## June 2011 Comp 3 A particular Turing machine has states S_1 , S_2 , S_3 and S_4 . S_1 is the start state and S_4 is the stop state. The machine uses one tape which is infinitely long in one direction to store data. The machine's alphabet is 1, \square . The symbol \square is used to indicate a blank cell on the tape. The transition rules for this Turing machine can be expressed as a transition function δ . Rules are written in the form: δ(Current State, Input Symbol) = (Next State, Output Symbol, Movement) So, for example, the rule: $$\delta(S_1, 1) = (S_1, 1, \rightarrow)$$ means: IF the machine is currently in state S₁ AND the input symbol read from the tape is 1 THEN the machine should remain in state S₁, write a 1 to the tape and move the read/write head one cell to the right The machine's transition function, δ , is defined by: $$\begin{array}{ll} \delta\left(S_{1},1\right) &= \left(S_{1},1,\rightarrow\right) \\ \delta\left(S_{1},\square\right) &= \left(S_{2},\square,\leftarrow\right) \\ \delta\left(S_{2},1\right) &= \left(S_{3},\square,\leftarrow\right) \\ \delta\left(S_{3},1\right) &= \left(S_{4},\square,\leftarrow\right) \end{array}$$ | | | | 1 | 1 | 1 | 1 | | |] | Current State: | S, | |--|---------|---------|--------|--------|-------|-------|-------|------|---|---|---------| | | | s of th | ne tap | pe, th | ne ci | urrer | nt po | | | ne transition function
write head and the cu | | | | | | | | | | | |] | Current State: | | | | | | | | | | | |] | Current State: | | | | | | | | | | | |] | Current State: | | | | | | | | | | | |] | Current State: | | | | | | | | | | | |] | Current State: | | | | | | | | | | | |] | Current State: | | | | | | | | | | | |] | Current State: | | | | | | | | | | | | | | (6 mark | | | Explain | what | this | Turi | ng m | nach | ine (| does | | | | | 11 (c) | Explain what a <i>Universal Turing machine</i> is. | | | | | | | | |--------|--|--|--|--|--|--|--|--| (2 mark | | | | | | | | ## June 2013 Comp 3 A particular Turing machine has states S_B , S_0 , S_1 , S_R and S_T . S_B is the start state and S_T is the stop state. The machine stores data on a single tape which is infinitely long in one direction. The machine's alphabet is 0, 1, #, x, y and \square where \square is the symbol used to indicate a blank cell on the tape. The transition rules for this Turing machine can be expressed as a transition function δ . Rules are written in the form: δ (Current State, Input Symbol) = (Next State, Output Symbol, Movement) So, for example, the rule: $$\delta(S_B, 1) = (S_1, y, \rightarrow)$$ means: IF the machine is currently in state S_B AND the input symbol read from the tape is 1 THEN the machine should change to state S₁, write a y to the tape and move the read/write head one cell to the right The machine's transition function, δ , is defined by: **Figure 9** shows an unlabelled finite state transition diagram for this machine. Some of the state transition arrows represent more than one of the machine's transition rules. For example, the arrow labeled \bullet represents the three rules: $\delta\left(S_0,\,0\right)=\left(S_0,\,0,\,\rightarrow\right)$, $\delta\left(S_0,\,1\right)=\left(S_0,\,1,\,\rightarrow\right)$ and $\delta\left(S_0,\,\#\right)=\left(S_0,\,\#,\,\rightarrow\right)$. Figure 9 | 7 (a) (i) | Which states are represented by the labels 2 and 3 in Figure 9? | | | | | | | | |------------|---|----------|---------|--|--|--|--|--| | | ② | 6 | (1 mark | | | | | | | 7 (a) (ii) | Which of the machine's transition rule(s) is/are represented by the arrow labelled 4 in Figure 9? | (1 mark | | | | | | | 7 (a) (iii) | Which of the machine's transition rule(s) is/are represented by the arrow labelled § Figure 9? | n | |-------------|---|-----| | | | | | | (1 ma | ırk | The machine's transition rule, δ , is repeated here so that you can answer question **7(b)** without having to turn back in the question paper booklet. 7(b) This Turing machine is carrying out a computation. The machine starts in state $S_{\rm B}$ with the string 01# on the tape. All other cells contain the blank symbol, \Box (not shown). Trace the computation of the Turing machine, using the transition function δ . Show the contents of the tape, the current position of the read/write head and the current state as the input symbols are processed. The first three steps and final state have been completed for you. | 7 (c) (i) | Describe the purpose of the symbols x and y in this Turing machine's alphabet. | | | | | | | |------------|--|----|--|--|--|--|--| | | | | | | | | | | | (1 mar | k) | | | | | | | 7 (c) (ii) | What does the Turing machine do? | | | | | | | | | | | | | | | | | | (1 mar | k | | | | | |